26 research outputs found

    Prospective comparison of microbial culture and polymerase chain reaction in the diagnosis of corneal ulcer.

    No full text
    PURPOSE: To compare polymerase chain reaction (PCR) to microbial culture for the detection and identification of bacterial and fungal pathogens in microbial keratitis. DESIGN: Prospective cohort study. METHODS: A total of 108 consecutive corneal ulcers were cultured and analyzed by PCR using pan-bacterial and pan-fungal primers. PCR products were cloned, sequenced, and compared to culture results using standard bioinformatics tools. RESULTS: Of the 108 samples, 56 were culture-positive, 25 for bacteria and 31 for fungi; 52 were culture-negative. After eliminating false-positive PCR products, 94 of 108 were positive by PCR, 37 for bacteria and 57 for fungi. Nineteen of 25 bacterial culture-positive samples were positive by PCR, and 29 of 31 samples culture-positive for fungi were positive by PCR. The majority of sequenced PCR products matched the positive culture results. Of the 52 culture-negative samples, 46 (88%) yielded pathogen deoxyribonucleic acid (DNA) PCR products, 18 bacterial and 28 fungal. These represented a variety of species, including at least three novel previously uncultured microbes. CONCLUSIONS: PCR detects microbial DNA in the majority of bacterial and fungal corneal ulcers, and identifies potentially pathogenic organisms in a high proportion of culture-negative cases. Yield and concordance with culture are higher for fungal than bacterial ulcers. Practical use of the technique is limited by artefactual amplification of nonpathogenic organisms. PCR may be used as an adjunct to culture to identify potential pathogens in microbial keratitis

    In Vivo Confocal Microscopy Cellular Features of Host and Organism in Bacterial, Fungal, and Acanthamoeba Keratitis.

    Get PDF
    PURPOSE: To determine cellular features of fungal (FK), Acanthamoeba (AK), and bacterial keratitis (BK) using HRT3 in vivo confocal microscopy (IVCM). DESIGN: Prospective observational cross-sectional study. METHODS: Eligible participants were adults with microbiologically positive FK, AK, or BK, of size ≥ 3 mm, attending Aravind Eye Hospital from February 2012 to February 2013. Exclusion criteria were descemetocele or perforation. At presentation, IVCM imaging was performed, then corneal scrapes were obtained for culture/light microscopy. An experienced grader (masked to microbiology/clinical features) assessed IVCM images for presence/absence of normal keratocyte-like morphology, stellate interconnected cells with/without visible nuclei, dendritiform cells (DFCs), inflammatory cells in a honeycomb distribution, and organism features. Statistical significance was assessed by logistic regression, adjusted for age, sex, ulcer size, and symptom duration. Main outcome measures were presence/absence of IVCM features in FK, AK, BK. RESULTS: A total of 183 participants had FK, 18 AK, 17 BK. Acanthamoeba appeared as bright spots (16/18, 89%), double-walled cysts (15/18, 83%), or signet rings (3/18, 17%), and often formed clusters after topical steroid use (univariable odds ratio [OR] 9.98, 95% confidence interval [CI] 1.02-97.96, P = .048). BK was associated with bullae in anterior stroma (OR 9.99, 95% CI: 3.11-32.06, P < .001). Honeycomb distribution of anterior stromal inflammatory cells was associated with FK (univariable OR 2.74, 95% CI: 1.01-7.40, P = .047). Aspergillus ulcers were associated with stromal DFCs (OR 11.05, 95% CI: 1.49-82.13, P = .019) and Fusarium ulcers with stellate appearance of interconnected cell processes with nuclei (OR 0.24, 95% CI: 0.09-0.65, P = .005). CONCLUSION: Specific cellular and structural features observed using IVCM in microbial keratitis may be associated with organism

    Association of conjunctival bacterial infection and female sex in cicatricial trachoma.

    Get PDF
    PURPOSE: Conjunctival infection with non-chlamydial bacteria may play an important role in the progression of trachoma, especially with regard to the development of corneal opacity and blindness. To further characterize the microbiological profile of bacterial conjunctival infections in cicatricial trachoma, a conjunctival swabbing of adults in rural Ethiopia was performed. METHODS: In a cross-sectional study conducted in nine Ethiopian villages with hyperendemic trachoma, persons 40 years of age or older with signs or symptoms consistent with trichiasis were recruited and conjunctival swabbing for bacterial pathogens was performed. RESULTS: Conjunctival examination and swabbing on 112 females and 36 males were performed. Of the 148 study participants, 101 (68.2%) were confirmed to have trichiasis, and 118 (80%) had conjunctival swabs positive for bacteria. In multivariate analyses, growth of pathogenic conjunctival bacteria was independently associated with trichiasis (odds ratio [OR] 6.93; 95% confidence interval [CI] 2.71-17.7) and female sex (OR 5.90; 95% CI 2.09-16.7). Females were more likely to have swabs positive for Streptococcus pneumoniae or Haemophilus influenzae than were males (OR 9.09; 95% CI 1.17-70.8). CONCLUSIONS: In a region of Ethiopia with endemic trachoma, conjunctival bacterial growth was more common in females than that in males. S. pneumoniae and H. influenzae, both of which frequently colonize the nasopharynx of children, were more common in females, suggesting that the preponderance of infection in females may be attributable to close contact with children. This finding is consistent with the theory that childcare activities may preferentially expose females to ocular chlamydial infection. (ClinicalTrials.gov number, NCT00221364.)

    Chlamydia on children and flies after mass antibiotic treatment for trachoma.

    Get PDF
    There are various approaches to control trachoma. These include the elimination of the ocular strains of Chlamydia trachomatis that cause the disease and to decrease the spread of infection by other measures such as fly control. Here, we examined how these two are related (i.e., how treating children with antibiotics affects carriage of Chlamydia by flies). Flies were collected in villages that had received mass oral azithromycin distribution and were compared with flies in untreated villages. Polymerase chain reaction (PCR) was performed to detect chlamydial DNA on the flies. Conjunctival swabs were also taken to assay for chlamydial prevalence in the children. Chlamydia was found on 23% of the flies in the untreated villages but only 0.3% in treated villages. Prevalence of trachoma in children proved to be an excellent predictor of the prevalence on flies (correlation coefficient, 0.89). Thus, treating children with antibiotics may drastically reduce the role of flies as a vector

    Cellular morphological changes detected by laser scanning in vivo confocal microscopy associated with clinical outcome in fungal keratitis.

    Get PDF
    HRT3 in vivo confocal microscopy (IVCM) images may indicate clinical outcome, but few studies have analysed this in fungal keratitis (FK). Adults with FK (diameter ≥3 mm) presenting to Aravind Eye Hospital, India from 2012-3 were enrolled prospectively. IVCM was performed at baseline, days 7, 14 and 21 post-enrolment (+/- 3 days where possible). Specific morphologies were identified in IVCM images by a grader masked to microbiology and clinical outcome (defined as good: healed/improving, or poor: enlarged ulcer, perforation or transplant/glue). Associations with final visit outcome assessed using logistic regression. 143 FK participants were enrolled; 87 had good outcome, 56 had poor outcome. Poor outcomes were associated with stellate interconnected cellular processes with no visible nuclei (OR 2.28, 95% CI: 1.03-5.06, p = 0.043) in baseline IVCM images, and fungal filaments (OR 6.48, 95% CI:2.50-16.78, p < 0.001) or honeycomb distribution of inflammatory cells (OR 5.24, 95% CI: 1.44-19.06, p = 0.012) in final visit images. Fungal filaments (OR 3.61, 95% CI:1.64-7.95, p = 0.001), stromal dendritiform cells (OR 2.88, 95% CI:1.17-7.11, p = 0.022), or stellate cellular processes with no visible nuclei (OR 2.09, 95% CI:1.14-3.82, p = 0.017) were associated with poor outcome if not in baseline but present in final visit images. IVCM can reveal morphological changes associated with clinical outcome

    A rationale for continuing mass antibiotic distributions for trachoma

    Get PDF
    BACKGROUND: The World Health Organization recommends periodic mass antibiotic distributions to reduce the ocular strains of chlamydia that cause trachoma, the world's leading cause of infectious blindness. Their stated goal is to control infection, not to completely eliminate it. A single mass distribution can dramatically reduce the prevalence of infection. However, if infection is not eliminated in every individual in the community, it may gradually return back into the community, so often repeated treatments are necessary. Since public health groups are reluctant to distribute antibiotics indefinitely, we are still in need of a proven long-term rationale. Here we use mathematical models to demonstrate that repeated antibiotic distributions can eliminate infection in a reasonable time period. METHODS: We fit parameters of a stochastic epidemiological transmission model to data collected before and 6 months after a mass antibiotic distribution in a region of Ethiopia that is one of the most severely affected areas in the world. We validate the model by comparing our predicted results to Ethiopian data which was collected biannually for two years past the initial mass antibiotic distribution. We use the model to simulate the effect of different treatment programs in terms of local elimination of infection. RESULTS: Simulations show that the average prevalence of infection across all villages progressively decreases after each treatment, as long as the frequency and coverage of antibiotics are high enough. Infection can be eliminated in more villages with each round of treatment. However, in the communities where infection is not eliminated, it returns to the same average level, forming the same stationary distribution. This phenomenon is also seen in subsequent epidemiological data from Ethiopia. Simulations suggest that a biannual treatment plan implemented for 5 years will lead to elimination in 95% of all villages. CONCLUSION: Local elimination from a community is theoretically possible, even in the most severely infected communities. However, elimination from larger areas may require repeated biannual treatments and prevention of re-introduction from outside to treated areas

    Trachoma Decline and Widespread Use of Antimicrobial Drugs

    No full text

    Seasonal effects in the elimination of trachoma.

    Get PDF
    The World Health Organization currently recommends annual mass antibiotic treatment to eliminate the ocular chlamydia that cause blinding trachoma. Active trachoma is believed to be seasonal in many areas of the world, and the optimal season in which to treat has not as yet been established. Here we use mathematical models of disease transmission to demonstrate that ideally, treatment should be administered before the low season to have the greatest chance of locally eliminating infection
    corecore